Plugin Langchain4jRag IngestDocument Table of Contents Table of ContentsExamplesPropertiesdocumentSplitterdropfromDocumentsfromExternalURLsfromInternalURIsfromPathmetadataembeddingsproviderOutputsembeddingStoreOutputsingestedDocumentsinputTokenCountoutputTokenCounttotalTokenCountDefinitionsGoogle VertexAI Model ProviderAzure OpenAI Model ProviderDeepseek Model Providerio.kestra.plugin.langchain4j.embeddings.Elasticsearch-ElasticsearchConnectionAnthropic AI Model ProviderOpenAI Model ProviderOllama Model Providerio.kestra.plugin.langchain4j.embeddings.Elasticsearch-ElasticsearchConnection-BasicAuthIn-memory Embedding Store that then store its serialization form as a Kestra K/V pairGoogle Gemini Model ProviderAmazon Bedrock Model Providerio.kestra.plugin.langchain4j.rag.IngestDocument-InlineDocumentPGVector Embedding StoreMistral AI Model Providerio.kestra.plugin.langchain4j.rag.IngestDocument-DocumentSplitterElasticsearch Embedding StoreContribute Join us on Slack YouTube GitHub Twitter BlueSky LinkedIn